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Abstract

Routing in ad hoc networks is a complicated task because of many reasons. The nodes are low-memory, low-pow-

ered, and they cannot maintain routing tables large enough for well-known routing protocols. Because of that, greedy

forwarding at intermediate nodes is desirable in ad hoc networks. Also, for traffic engineering, multi-path capabilities

are important. So, it is desirable to define routes at the source like in source based routing (SBR) while performing

greedy forwarding at intermediate nodes.

We investigate trajectory-based routing (TBR) which was proposed as a middle-ground between SBR and greedy

forwarding techniques. In TBR, source encodes trajectory to be traversed and embeds it into each packet. Upon the

arrival of each packet, intermediate nodes decode the trajectory and employ greedy forwarding techniques such that

the packet follows its trajectory as much as possible.

In this paper, we address various issues regarding implementation of TBR. We also provide techniques to efficiently

forward packets along a trajectory defined as a parametric curve. We use the well-known Bezier parametric curve for

encoding trajectories into packets at source. Based on this trajectory encoding, we develop and evaluate various greedy

forwarding algorithms
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1. Introduction

Ad hoc networks have their own characteristics

which lead to significant amount of research in the

area. Particularly, routing in ad hoc networks is a

complicated task because of many reasons. For

example, nodes are generally low in memory and
ed.
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Fig. 1. An example for using TBR in an application: the

application collects photos of the ‘‘west of mountains’’, which

causes best route to be different than traditional shortest-path

routing.
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power, and hence they cannot maintain routing ta-

bles large enough for well-known link-state or dis-

tance-vector routing protocols. This is known as

stateless routing [1], since nodes do not maintain

routing tables representing network state. More-
over, nodes are mobile which makes it harder to

converge for typical proactive routing protocols.

So, because of its stateless nature, greedy for-

warding (e.g. FACE [2], GPSR [1] and Cartesian

routing (CR) [3]) of packets at intermediate nodes

is desirable in ad hoc networks. Also, for traffic

engineering, multi-path capabilities (e.g. source

based routing (SBR) [4]) are desirable. However,
it is not possible to employ well-known multi-path

routing techniques (e.g. MPLS [5], or others [6]) in

ad hoc, particularly mobile, networks. Niculescu

and Nath [7,8] proposed trajectory-based routing

(TBR) as a middle-ground between SBR and

greedy forwarding techniques. In TBR, source

encodes trajectory to traverse and embeds it into

each packet. Upon the arrival of each packet, inter-
mediate nodes employ greedy forwarding tech-

niques such that the packet follows its trajectory

as much as possible. This way, routing becomes

source-based while there is no need for routing

tables for forwarding at intermediate nodes.

Furthermore as another motivation for TBR,

there is a new trend toward application-driven net-

working [9], particularly in sensor networks. In this
new networking paradigm, applications can com-

municate with network and customize network

behavior based on their own requirements. For

example, consider an image processing application

which collects pictures taken at different nodes in

the network and merges them into a 3D picture

of a scene. Consider the example network in Fig.

1. Assume that the application is running at nodes
A and B, and wants to create a large picture that

captures the west of mountains. Observe that tra-

ditional shortest-path routing is not suitable for

this type of application since the shortest path

from A to B traverses nodes that are far from

the west of mountains. A more suitable routing

for this application is to route such that this appli-

cation�s traffic traverses nodes that are close to the
trajectory defined as the west of mountains. This

trajectory is also drawn as a parametric curve in

Fig. 1. So, TBR is promising for such applications,
examples of which can be extended, e.g. collecting

measurements from sensors deployed over a river,

routing without crossing into an undesired area.
In [7,8], Niculescu and Nath described basic

features of TBR along with a local positioning sys-

tem (LPS). Since it has a greedy forwarding mech-

anism, TBR needs support for positioning of

wireless nodes. As a solution to this problem, var-

ious positioning systems such as GPS [10] can be

used. However, GPS requires high power availa-

bility which is difficult and costly in implementa-
tion of low-power ad hoc networks. For this

purpose, GPS-free positioning techniques [11,12]

as well as Nath and Niculescu�s LPS can be used

to enable TBR�s implementation at low-power

nodes without GPS support. So, in this paper,

we assumed that nodes have a knowledge of their

positions with respect to a mutually known coordi-

nate system. This assumption is reasonable as the
use of GPS as well as other positioning tools are

becoming more popular [13–17,11,12].

In TBR, one important issue to explore is how

to efficiently forward packets along a defined par-

ametric curve Q(t). Niculescu and Nath experi-

mented with simple parametric curves such as sine

curve, and left the question of how to encode vari-

ous trajectories into packets as a parametric curve.
In this paper, we propose an effective method

of encoding trajectories into packets at source.
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For trajectory encoding, we propose to use Bezier

curves [18] which give a lot of flexibility in the

greedy forwarding of TBR while it is possible to

define a broad range of curves with them. We also

describe a protocol for implementing longer and
more complex trajectories as a concatenation of

Bezier curves. Given this trajectory encoding tech-

nique at source, we present various mechanisms

to perform forwarding at intermediate nodes.

Contributions of this paper can be listed as fol-

lows:

� Methodology for encoding and decoding trajec-
tories by using cubic Bezier curves.

� Implementation of TBR using Bezier curves,

which gives enough flexibility to define a large

range of trajectories (e.g. zig-zag, circular).

� An implementation protocol of TBR for longer

and more complex trajectories, virtually with-

out any limit on the length and complexity of

the trajectory.
� Implementation of the forwarding methodo-

logy, lowest deviation from curve (LDC), that

performs optimally in terms of obeying the tra-

jectory in forwarding.

� Evaluation of the forwarding technique LDC as

well as several other intuitive forwarding tech-

niques.

� Packet-based ns-2 simulation of these new
implementation and forwarding techniques.

The rest of paper is organized as follows: First,

in Section 2 we describe details of Bezier curves

and how to use them for trajectory encoding in

TBR. In Section 3 we briefly describe ways of scal-

ing packet header for trajectory encoding with

Bezier curves. Next in Section 4, we propose vari-
ous greedy algorithms for packet forwarding in

TBR with Bezier curves. In Section 5, we present

ns-2 simulations of the forwarding algorithms

and evaluate their performance. Finally, in Section

6 we summarize the work.
Fig. 2. A cubic Bezier curve.
2. Using Bezier curves for TBR

Bezier curves are special types of curves that are

used in the area of graphics for representing letters
in special purpose fonts. These curves are defined

by a number of points––source, destination, and

some control points. Depending on the number of

control points, they are named accordingly. For in-

stance, a Bezier curve defined by one control point
is called as quadratic Bezier curve, while the one

which is defined by two control points is known

as cubic Bezier curve. More details about basic cal-

culations for Bezier curves can be found in [18].

There are other forms of Bezier curves such as

quintine Bezier curves (three control points), but

our choice of using cubic Bezier curve was dictated

by its simplicity as well as ease of computation.

2.1. Forwarding along a cubic Bezier curve

Shape of a Bezier curve is dependent on the

locations of the control points. A sample cubic

Bezier curve is shown in Fig. 2. It can also be

represented in its parametric form, Q(t). When

parameter t=0, it represents the source point of
the curve, while t=1 represents the destination

point of the curve.

More specifically, a cubic Bezier curve is repre-

sented algebraically as

QðtÞ ¼ X ¼ A t3 þ B t2 þ C t þ X0; ð1Þ
where

X ¼
x

y

� �
; A ¼

ax
ay

� �
; B ¼

bx
by

� �
;

C ¼
cx
cy

� �
; X0 ¼

x0
y0

� �
:



Fig. 3. A node near a trajectory defined by a Bezier curve Q(t).
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For the third order polynomial shown in (1), the

coefficients A, B, C are unique if the following

equation system is satisfied: 2

C ¼ 3ðX1 � X0Þ;
B ¼ 3ðX2 � X1Þ � C;

A ¼ X3 � X0 � C � B:

ð2Þ

Here, X0, X1, X2, and X3 are vectors similar to X

containing the x and y coordinates of source point,
control point-1, control point-2, and destination

point respectively.

So, given the coordinates of the source (x0, y0),

destination (x3, y3), and the two control points (x1,

y1) and (x2, y2), one can calculate constants A, B,

and C from the equation system (2), thereby recov-

ering the complete Bezier curve.

Our idea is to use this mathematics to encode
the complete trajectory into each packet, by put-

ting the coordinates of source, destination, and

the two control points into packet header. Then,

solve the equation system in (2) to decode the com-

plete trajectory at any intermediate node. Alterna-

tively, putting the coordinate of source point and

the three constant vectors A, B, and C into packet

header will also work.

2.2. Closest point on the Bezier curve

Given a trajectory defined by a Bezier curve, the

nodes can either be on the Bezier curve or could be

near the Bezier curve. In order to implement for-

warding algorithms, for a node near the Bezier

curve, we need to find where this node corresponds
on the Bezier curve. This is actually the point on

the curve closest to the node.

Finding the Bezier curve point closest to a node

is a non-trivial task. In Fig. 3, the node does not lie

on the Bezier curve. To calculate the point on the

curve which is nearest to the node, we draw a per-

pendicular on the tangent of the curve. Now, with

Q(t) being a third order polynomial and the
tangent Q0(t) being a second order polynomial,

we get a fifth order polynomial when we have

Q(t)Q0(t)=0. One root of this equation will be
2 Please refer to [18] for proof.
the point on the Bezier curve Q(t) nearest to the

node [19]. Roots of a fifth degree polynomial can
be computed but finding roots of the polynomial

with order greater than five is not known.

Given the above methodology to find the near-

est point a Bezier curve, we now fix a terminology

to ease writing rest of the paper. Given a Bezier

curve Q(t) and a node Ni as shown in Fig. 3, we

call the value of parameter t at the curve point

closest to Ni as residual of Ni and represent it by
ti. The closest curve point itself is called as residual

point of Ni, and represented by Q(ti). Finally, we

call the distance between the node and Q(ti) as

the residual distance of Ni and represent it by di.
3. Long or more complex trajectories

If we consider applications such as traversing a

river or capturing eastern face of a mountain into

a picture, these applications will require consider-

ation of curves which could be represented by

using much more number of control points than

two. Such a curve will be very difficult to encode

in the packet header, because we will have to en-

code each and every control point which would
make the header bulky. Also, computation for

decoding such a Bezier curve is extremely difficult

during the time of greedy forwarding.

As shown in Fig. 4, one way to define long tra-

jectories is to split the trajectory into smaller pieces



Fig. 4. A long zig-zag trajectory as a concatenation of cubic Bezier curves.
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which can be represented by cubic Bezier curves

(i.e. two control points). So, the complete trajec-

tory is defined as a concatenation of a series of

cubic Bezier curves. We call the concatenation

points asmiddle points, shown as I1 and I2 in Fig. 4.

Before starting the actual transmission of data,

the source can probe the ad hoc network by send-
ing a control-plane packet which includes the

whole trajectory with n control points. Upon arri-

val of that probe packet, an intermediate node di-

vides the whole trajectory into equal pieces, 3 and

checks whether itself is close enough (e.g. within 5

m of radius) to one of those middle points. If so,

that particular node identifies itself as a special

intermediate node (SIN) for this source-destina-
tion pair and sends an acknowledgement to the

source. The source confirms SIN by replying to

the acknowledgement (this is necessary to resolve

contention for being SIN if there are multiple can-

didates close to the desired middle point). After

this confirmation from the source, the SIN records

the control points for the next cubic Bezier curve

in the trajectory. This process will continue until
all pieces of the trajectory is captured by a SIN

which keeps the control points of the next cubic

Bezier curve.

In this manner, there will be n�1 SINs, n cubic

Bezier curves for a trajectory with 2n control

points. After such a signaling protocol as de-

scribed above, the source will no longer have to en-

code the 2n control points into data packets.
Rather, it will just need to put two control points
3 For a Bezier curve Q(t) with n control points, these pieces

are portions of the whole curve in between points Q(t/k) where

k=0, . . .,n.
for the next cubic Bezier curve on the trajectory,

since the next SIN will be putting the control

points necessary for the following piece of the tra-

jectory.

When the nodes are mobile, SINs can move

from their original locations and may no longer

be close to the trajectory. One quick solution is
to send probe packets frequently throughout the

data transmission. This way, SINs will be re-

assigned if the previous ones got away from the

trajectory.
4. Greedy forwarding algorithms for TBR

Given a neighborhood and a trajectory to fol-

low for the packet, a node may follow different for-

warding strategies depending on application and

user criteria. One can define various objectives

for forwarding in TBR:

� Obey the trajectory: There might be cases where

obeying the trajectory is critical. For example, if
the trajectory is passing through just near en-

emy area in a battlefield, then making sure that

packets are obeying the trajectory and are not

getting to the enemy area is important. This be-

comes particularly important when packets in-

clude secure information that must not reach

to enemy�s wireless agents.
� Reach the destination node: As another criteria,

if application generating the packets is sensitive

to loss of packets, then one might find it more

convenient to forward the packet to the destina-

tion node if it is in the neighborhood of the for-

warding node although it might be disobeying

the trajectory significantly.



Fig. 5. Big pictures of various TBR concepts. (a) Big picture of TBR forwarding, (b) failure of CTC and MAC forwarding, (c) failure

of LAC forwarding and (d) big picture of LDC forwarding.

4 Note that our definition of neighborhood is different from

Niculescu and Nath�s definition in [8].
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� Reach quickly: If the information being sent is

delay sensitive and the similarity of route to tra-

jectory is not of much importance, then it be-

comes more convenient to forward the packets

such that they reach to the destination as quick
as possible.

For usefulness of the forwarding strategy, the

forwarding algorithm must make sure that the

packet advances along the trajectory curve. In

other words, a node should not forward a packet

backwards along the trajectory curve. For exam-

ple, in Fig. 5a, consider node N0 with residual t0.
Although there are other nodes within the trans-

mission range of N0, the forwarding algorithm

must forward packets to one of the gray nodes
whose residuals are larger than t0. We will call

the set of nodes that have residuals larger than t0
as neighborhood 4 of N0. Within the neighborhood,

selection of which node to forward packets next

depends on various user and application objec-
tives, some of which were itemized above.

As another important issue, the simplicity of the

forwarding algorithm is crucial for implementa-

tion purposes. Since agents are generally low-pow-

ered in wireless networks (particularly in sensor

networks), computational simplicity is an impor-

tant factor in terms of deployment.
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In the following sub-sections, we develop algo-

rithms for selection of next node within the neigh-

borhood according to the above-mentioned

various forwarding criteria. Note that all the fol-

lowing forwarding algorithms assume that the set
of nodes that are composing the neighborhood is

calculated. This only requires residuals to be calcu-

lated for every single node within the transmission

range. Given residuals of nodes in the transmission

range, one can easily construct the neighborhood

of the current node (the node where the packet is

currently residing) by simply comparing residuals

to the residual of the current node.

4.1. Random

A simple algorithm is to select the next node

randomly from the neighborhood. This algorithm

is beneficial when computation power is of criti-

cal importance. Also, if transmission power of

nodes in the network is relatively small, then
this algorithm will perform fine since nodes will

not have very large neighborhoods that may

cause packets to be forwarded far away from

the trajectory. So, the Random algorithm may

be useful for wireless networks with nodes

having low computational and transmission

power.

4.2. Closest to curve (CTC)

Another computationally simple algorithm is to

select the node which is closest to the curve among

the nodes in neighborhood. This algorithm is pret-

ty straightforward to implement. Simply, calculate

residual distances of each node in the neighbor-

hood and select the one resulting in the smallest
residual distance.

If obeying to the trajectory is important, then

CTC is more useful. This algorithm is again useful

for the cases where computational power is of

critical importance. However, it may result in sig-

nificant errors in forwarding such as shown in

Fig. 5b. Since residual distance d5 of node N5 is

smaller than residual distances all the other nodes
in the neighborhood, N0 forwards packet to N5

which causes a significant violation of the trajec-

tory.
4.3. Least advancement on curve (LAC)

One might need to traverse all the nodes that

are along the trajectory curve. For example, if an

information needs to be flooded in the network,
application may want its packets to traverse as

much nodes as possible. A simple algorithm is to

forward to the node whose residual lies right next

to the residual of the current node. Note that this

algorithm is also useful for low computation pow-

ered networks.

This means all the nodes that are within the

transmission range will be traversed one after an-
other according to the order of their residuals.

However, again, this might result in significant er-

rors in forwarding such as in Fig. 5c. Although N1

is the farthest node from the trajectory curve, N0

forwards packets to N1 because t1 is less than res-

iduals of all the other nodes in the neighborhood

of N0.

4.4. Hybrid of CTC and LAC (CTC–LAC)

Another possibility is to combine CTC and

LAC when one want traverse as many nodes as

possible while trying to obey the trajectory curve.

Combining CTC and LAC can be done in various

ways depending on importance of obeying the tra-

jectory relative to importance of traversing as
many nodes as possible. We assume that obeying

to the trajectory is of more importance.

A computationally simple algorithm is as fol-

lows: First, define a tolerable residual distance D.

Then, go through the neighborhood and try to find

a neighbor node Ni having residual distance di<D.

If there are multiple nodes satisfying the condition

di<D, then select the one with smallest residual ti.
If there is no nodes satisfying the condition, then

increment D with a step value DD and try again

until a node is selected as the next node.

4.5. Most advancement on curve (MAC)

If delay is of more importance, one might want

to forward the packets to the farthest node along
the curve. This is again a simple algorithm to

implement since just calculation of residuals will

be enough in order to find out the farthest node
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to the current node. However, MAC forwarding

may cause significant violations of trajectory as

shown in Fig. 5b.

Similar to CTC–LAC, it is also possible to com-

bine CTC with MAC. However, we skip develop-
ing a hybrid algorithm between CTC and MAC,

since it is pretty similar to CTC–LAC.

4.6. Lowest deviation from curve (LDC)

When obeying the trajectory is very crucial, it is

possible to select the next node such that the taken

route deviates from the trajectory as less as possi-
ble. However, this requires extra computations.

We now describe how to implement such an algo-

rithm.

In order to obey the trajectory at most level, at

a current node N0, the best next node Ni should be

selected such that the line between N0 and Ni must

have the smallest deviation from the trajectory

compared to the other lines between N0 and any
other node in N0�s neighborhood. Let Ai be the

area between the line N0–Ni and the curve, i.e.

the total deviation of the forwarding from the tra-

jectory. In order to minimize the average deviation

from the trajectory, the next node selection must

minimize ratio of Ai by the change in residuals

ti� t0, i.e. the deviation from trajectory per unit

length of the curve. So for node N0, we can write
the ratio to minimize as

Ri ¼
Ai

ti � t0
¼ AreaðN 0;Ni;Qðt0Þ;QðtiÞÞ

ti � t0
Fig. 6. Calculation of area between the Bezier trajectory and the fo

(b) Case II: ti< t0+(n+1)dt.
for all Ni in neighborhood of N0. Fig. 5d shows big

picture of the necessary area calculations for LDC

forwarding at node N0. To illustrate an example,

N0 needs to calculate A1=a1+a2+a3, A2=a1+a4,

and A3=a1+a2+a5.
The problem is that, however, calculation of Ai

requires extra computations and is not trivial.

Closed-form analytical expressions for Ai are very

hard to obtain. Fortunately, we can approximate

Ai by numerical techniques similar to the method

of Riemann sums [19] in numerical integration.

Starting from the residual t0, we move along the

curve with a fixed increase dt in the curve para-
meter t. At the beginning we know the points:

(x0, y0), Q(t0). We first calculate Q(t0+dt) and

draw the line Q(t0)–Q(t0+dt). Then, we draw a line

from Q(t0+dt) toward the forwarding line (x0, y0)–

(xi, yi) parallel to the line Q(t0)–(x0, y0). Let (x1, y1)

be the point where our new line intersects the for-

warding line (x0, y0)–(xi, yi). By using the slopes of

lines (x0, y0)–(xi, yi) and Q(t0)–(x0, y0), we calcu-
late the point (x1, y1). Now, we have a trapezoid

drawn by points: Q(t0), (x0, y0), Q(t0+dt), and

(x1, y1). Since we know coordinates of all the four

points we can calculate the area of the trapezoid.

As shown in Fig. 6a and b, we, then, iterate the

procedure by incrementing the residual to t0+2dt

and generate a new trapezoid. This iteration con-

tinues until either the residual on the curve passes
ti or the intersection point on the forwarding line

passes (xi, yi). In other words, we make n iterations

if one of the two conditions is met:
rwarding line. (a) Case I: (xn, yn)<(xi, yi)<(xn+1, yn+1) and
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� Condition 1: ti< t0+(n+1)dt.

� Condition 2: (xn,yn)< (xi,yi)<(xn+1,yn+1).

Depending on which condition is satisfied first,

we calculate the rest of the area Ai accordingly.
Fig. 6b shows an example of the case when the

second condition is satisfied first. We simply draw

a quadrilateral between the four points: (xn, yn),

Q(t0+ndt), Q(ti), and (xi, yi). We can easily calcu-

late area of this quadrilateral since coordinate of

all the four points are available.

Fig. 6a shows an example of the case when the

first condition is satisfied first. We first calculate
the triangular area between the points: (xn, yn),

Q(t0+ndt), and (xi, yi). Then, we keep increment-

ing the residual until the second condition is satis-

fied. At each iteration we calculate the triangular

area generated by drawing a line between (xi, yi)

and the new point on the curve. In other words,

at iteration n+m, we calculate the area of the tri-

angle between points: (xi, yi), Q(t0+(n+m�1)dt),
and Q(t0+(n+m)dt). Finally, when the second

condition is met we simply calculate the triangular

area between the points (xi, yi), Q(ti), and the last

point on the curve (i.e. Q(t0+(n+k)dt) if the con-

dition was met at iteration n+k+1).

The approximation to Ai is simply accumula-

tion of the areas of the small pieces that were gen-

erated during the procedure above. Of course,
approximation will perform better when the resid-

ual increment dt is smaller.

LDC is expected to perform optimally if

obeying the trajectory is the only and the most

important objective in TBR. Given the local infor-

mation only, it provides the best way of selecting

the next node whom packets to be forwarded.

In order to optimize the overall route taken by
packets of a trajectory, better techniques can be

developed when non-local information is available

to forwarding nodes. When computational

simplicity is important one might want to use

CTC instead of LDC with the trade-off that it

may cause significant errors such as the one

shown in Fig. 5b. An interesting observation is

that CTC performance will be very close to LDC
performance in dense networks. So, in heavily

dense networks CTC may be a better choice than

LDC.
5. Simulations

Our purpose of ns-2 simulations is two fold:

� Evaluate the forwarding algorithms developed for

TBR.

� Proof-of-concept for extension to longer and

more complex trajectories.

We particularly look at two metrics: average

deviation from trajectory and average path length.

For this paper, we do not include mobility in our

simulations.

5.1. Evaluation of the forwarding algorithms

We simulated the forwarding algorithms for

two different trajectories: circular and zig-zag. Tra-

jectories are shown in Fig. 7a over a scenario with

75 nodes. We varied number of nodes in the simu-

lation from 20 to 300. Each node is a wireless node
with an omnidirectional antenna. Transmission

range of antennas is 5 m in radius and the anten-

nas are placed 0.9 m higher than XY -plane. The
wireless nodes are exchanging beacons with an

interval of 10 s. Each node maintains a neighbor

table, each entity of which expires if no new bea-

con has been received within the last 110 s.

In our simulations, nodes are randomly distrib-
uted over a rectangular area 250 m·500 m. We

picked a source-destination pair such that source

is close to the starting point of trajectory and the

destination node is close to the ending point of tra-

jectory. The source generates CBR traffic with

average packet size of 0.5 KB. Total simulation

time is 1000 s.

Figs. 8a,b and 9a,b show average deviation of
packets� routes from the ideal trajectory, for the

case of circular and zig-zag trajectories respec-

tively. We observe that LDC is outperforming

the other forwarding algorithms in the case of cir-

cular trajectory. Sometimes, CTC outperforms

LDC which explains the fact that LDC is making

local optimization without considering next hop�s
choice. This causes CTC to win sometimes. In
both trajectories, we see that LDC and CTC is

converging to each other as density of nodes

increases. However, we observe CTC failure (as



Fig. 7. Experimental trajectories: (a) Zig-zag and circular single-piece trajectories on randomly located 75 nodes. (b) The multi-piece

trajectory with a single SIN and two cubic Bezier curves.

Fig. 8. Simulation results for the circular trajectory. (a–b) Average deviation from trajectory. (c–d) Path length normalized to

trajectory length.
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explained in Fig. 5b) in some cases such as when

number of nodes is 250 in circular trajectory.
Also, LAC and MAC performs worse than the

others in general, which is caused by LAC�s and



Fig. 9. Simulation results for the zig-zag trajectory. (a–b) Average deviation from trajectory. (c–d) Path length normalized to trajectory

length.
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MAC�s ignorance on obeying to trajectory. As ex-
pected, CTC–LAC performs in between CTC and

LAC. Nicely, we observe that Random forwarding

performs average compared to other forwarding

algorithms.

Figs. 8c,d and 9c,d show average path length

traversed by packets normalized to the length of

the ideal trajectory, for the case of circular and

zig-zag trajectories respectively. We can observe
that, as expected, LAC performs worst in terms

of path length. MAC outperforms all the other

for the circular trajectory, however it is beaten

by CTC and CTC–LAC for the zig-zag trajectory.

That difference becomes more evident as density of

nodes increases.

For the circular trajectory, normalized path

length is approximately 1 for LDC, which also
shows that LDC is the one that obeys the trajec-

tory most. However, for zig-zag trajectory, LDC

becomes larger than 1 as density of nodes in-

creases. This means LDC is best for moderately
populated ad hoc networks. This discourages use
of LDC for very dense networks since its computa-

tional overhead is more for denser networks (as

number of neighbors will increase too).

Also, Random again performs average com-

pared to the others in terms of path length. So,

an interesting finding is that Random forwarding

is good in order to achieve an average performance

while avoiding a lot of computational overhead of
more complex forwarding mechanisms. For Ran-

dom forwarding, probability of reaching destina-

tion was more than 80%. For all the others, it

was more than 95%.

5.2. More complex trajectories

Simulation settings are the same as the one in
the previous section. We simulate CTC–LAC for-

warding on a zig-zag trajectory which is being

defined by two cubic Bezier curves as shown in

Fig. 7b. The data packets include only two control



Fig. 10. Performance results for CTC–LAC forwarding on the multi-piece trajectory. (a) Deviation from trajectory and (b) normalized

average path length.
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points. There is one SIN, which splits the trajec-

tory into two pieces.

Fig. 10a and b shows average deviation from

trajectory and average path length on the zig-zag
trajectory defined by two cubic Bezier pieces. We

observe that average path length normalized to

the ideal trajectory length is approximately 1.

Also, deviation from trajectory reduces as the

number of nodes increases. So, the results illus-

trates that packets get forwarded properly even

though they include only a fraction of the control

points of the complete trajectory.
6. Summary

In this paper, we studied various implementa-

tion issues of trajectory-based routing (TBR) for

stateless routing in ad hoc networks. We proposed

to use Bezier curves for defining trajectories in
TBR. Various shapes for routes can be defined

by using Bezier curves.

We particularly evaluated several forwarding

algorithms based on trajectories defined by Bezier

curves. We proposed an optimal forwarding algo-

rithm, lowest deviation from curve (LDC), that

obeys to trajectories the most. We ran extensive si-

mulations in order to evaluate the forwarding
algorithms. We found that LDC is good for mod-

erately populated ad hoc networks. Interestingly,

we also found that Random forwarding performs

average while avoiding significant computational

overhead.
By introducing signaling phase to the protocol,

we also proposed a methodology for extending

TBR with Bezier curves to longer and more com-

plex trajectories which can be encoded by larger
information. Our proposed method enables rout-

ing of data packets through complex trajectories,

while keeping the packet header size constant.

Future work will include evaluation and improve-

ment of this method with a particular considera-

tion given to signaling overhead.

Several issues remain to be investigated such as

effect of mobility patterns, traffic patterns. Also,
future work includes studying methods for increas-

ing resilience (i.e. probability of reaching to desti-

nation) for different forwarding algorithms.

Finally, answering the question of how to route

the packets when the destination and the source

are mobile, is an open issue.
References

[1] B. Karp, H.T. Kung, GPSR: greedy perimeter stateless

routing for wireless networks, in: Proceedings of ACM

MOBICOM, 2000.

[2] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing

with guaranteed delivery in ad hoc wireless networks,

Wireless Networks 7 (6) (2001) 609–616.

[3] G. Finn, Routing and addressing problems in large

metropolitan-scale networks, Tech. Rep., University of

Southern California, March 1987.

[4] D.B. Johnson, D.A. Maltz, Dynamic source routing in

ad-hoc wireless networks, in: T. Imielinski, H. Korth

(Eds.), Mobile Computing, Kluwer, Dordrecht, 1996, p.

353.



M. Yuksel et al. / Ad Hoc Net
[5] E. Rosen, A. Viswananthan, R. Callon, Multiprotocol

label switching architecture, IETF RFC 3031, February

2001.

[6] D. Ganesan, R. Govindhan, S. Shenker, D. Estrin, Highly

resilient energy efficient multipath routing in wireless

sensor networks, Mobile Computing and Communications

Review 1 (2) (2002).

[7] D. Niculescu, B. Nath, Routing on a curve, in: Proceedings

of Workshop on Hot Topics in Networks (HOTNETS-I),

2002.

[8] D. Niculescu, B. Nath, Trajectory based forwarding and its

applications, in: Proceedings of ACM MOBICOM, 2003.

[9] J. Follows, D. Straeten, Application-Driven Networking:

Concepts and Architecture for Policy-Based Systems, IBM

Red Book, 1999.

[10] B. Parkinson, et al., Global Positioning System: Theory

and Application, Progress in Astronautics and Aeronau-

tics, vol. 163, AIAA.

[11] N. Bulusu, J. Heidemann, D. Estrin, GPS-less low cost

outdoor localization for very small devices, IEEE Personal

Communications Magazine, Special Issue on Smart Spaces

and Environments, October, 2000.

[12] R. lyengar, B. Sikdar, Scalable and distributed GPS free

positioning for sensor networks, in: Proceedings of IEEE

International Conference on Communications (ICC), 2003.

[13] D. Niculescu, B. Nath, Ad-hoc positioning system (aps), in:

Proceedings of GLOBECOM, 2001.

[14] J.C. Navas, T. Imielinski, Geographic addressing and

routing, in: Proceedings of ACM MOBICOM, 1997.

[15] Y.-B. Ko, N.H. Vaidya, Location-aided routing (lar) in

mobile and ad-hoc networks, in: Proceedings of ACM

MOBICOM, 1998.

[16] J. Li et al., A scalable location service for geographic ad-

hoc routing, in: Proceedings of ACM MOBICOM, 2000.

[17] N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The

cricket location-support system, in: Proceedings of ACM

MOBICOM, 2001.

[18] P.J. Schneider, D.H. Eberly, Geometric Tools for Com-

puter Graphics, Morgan Kaufmann, San Francisco, CA,

2002.

[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flan-

nery, Numerical Recipes in C: The Art of Scientific Com-

puting, Cambridge University Press, Cambridge, 1992.
Murat Yuksel is a Post-Doctoral
Researcher and Lecturer at ECSE
Department of Rensselaer Polytechnic
Institute, Troy, NY. He received MS
and PhD degrees in Computer Science
from Rensselaer Polytechnic Institute
in 1999 and 2002 respectively. He
holds a BS degree in Computer Engi-
neering from Ege University, Izmir,
Turkey in 1996. His research is on
various networking issues such as
routing in wireless sensor and ad hoc
networks, mobile free-space-optical

networks, large-scale network simulation, network pricing, and

works 4 (2006) 125–137 137
performance analysis. He is a member of IEEE and Sigma Xi.

Ritesh Pradhan is currently working in
GE Power Systems in Atlanta, GA. He
is an alumnus of the Rensselaer Poly-
technic Institute, where he earned his
MS degrees in Electrical Engineering
and Information Technology. His re-
search interests are in the area of net-
working, data warehousing and
Internet pricing.
Shivkumar Kalyanaraman is an Asso-

ciate Professor at the Department of
Electrical, Computer and Systems
Engineering at Rensselaer Polytechnic
Institute in Troy, NY. He received a
BTech degree from the Indian Institute
of Technology, Madras, India in July
1993, followed by MS and PhD de-
grees in Computer and Information
Sciences at the Ohio State University
in 1994 and 1997 respectively. His re-
search interests are in network traffic
management topics such as congestion

control architectures, quality of service (QoS), high-speed

wireless, free-space optical networking, network management,
multicast, pricing, multimedia networking, and performance
analysis. His special interest lies in developing the inter-disci-
plinary areas between traffic management, wireless communi-
cation, optoelectronics, control theory, economics, scalable
simulation technologies, and video compression. He is an
member of the ACM and IEEE.


	An implementation framework for trajectory-based routing in ad hoc networks
	Introduction
	Using Bezier curves for TBR
	Forwarding along a cubic Bezier curve
	Closest point on the Bezier curve

	Long or more complex trajectories
	Greedy forwarding algorithms for TBR
	Random
	Closest to curve (CTC)
	Least advancement on curve (LAC)
	Hybrid of CTC and LAC (CTC ndash LAC)
	Most advancement on curve (MAC)
	Lowest deviation from curve (LDC)

	Simulations
	Evaluation of the forwarding algorithms
	More complex trajectories

	Summary
	References


